Biomass-Based Monitoring of Heavy Metals

Joshua P. Adams1, Erdem Topsakal2, and Cetin Yuceer3

1Graduate Student and 3Assistant Professor, Department of Forestry and 2Assistant Professor, Department of Electrical Engineering, Mississippi State University, Mississippi State, MS, USA

New developments in biotechnology provide for heavy metal removal and monitoring. Hyper-accumulating plants such as \textit{Thlaspi caerulescens} express genes amplifying heavy metal absorption and detoxification. These small plants are not practical for large-scale remediation. Current technology allows gene transfer and expression into high-biomass plants such as \textit{Populus}. This would be beneficial since \textit{Populus} has silvicultural systems for establishment, culture, protection, and harvest. Furthermore, \textit{Populus} can be transformed into a real-time monitoring system by fusing heavy metal proteins with fluorescent proteins (FP). Metal concentration would be detected through FP-produced light changes measured by an optical sensor. Subsequently geographical positioning (GPS)/global system for mobile communication (GSM) technology can be used to transfer this information to a central location for monitoring.